Life Cycle Analyses

Summary

01 Methodology

02 Results

Methodology

Environmental Impact Assessment

Functional unit

The functional unit is a quantified performance of a product system for use as a reference unit. One of the primary purposes of a functional unit is to provide a reference to which the input and output data are normalized (in a mathematical sense). Therefore, the functional unit shall be clearly defined and measurable.

Impact Indicator

The impact is measured through the "IPCC 2021 GWP100" method

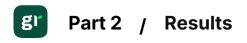
Electricity impact calculation method

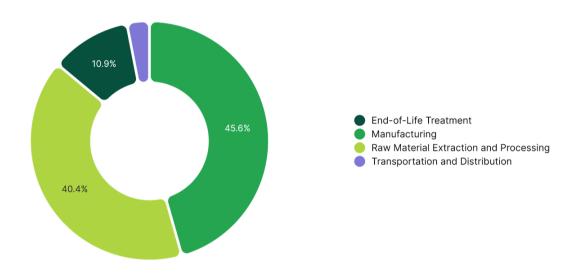
Following guidelines from the GHG Protocol, the impact of electricity is calculated using the location-based approach. This means that the emission factors used represent the average annual carbon intensity of the power grid in the country the processes take place in.

Life Cycle Analyses

Cradle to grave

Emission Factor Inventory


Nu m	Emission Factor	Source	Value	Unit
1	market for zinc	ECOINVENT 3.10	2.59	kg
2	Polypropylene, granulate Market activity	ECOINVENT 3.10	3.52	kg
3	Electricity Total (Scope 2 & 3) People's Republic of China	IEA 2023	0.72	kWh
4	Freight Boat From CN to FR	WELOW EXPERTS 1.0	0.25	kg
5	Tinplate scrap, sorted Ordinary transforming activity	ECOINVENT 3.10	0.03	kg
6	Waste polyethylene/polypropylene product Ordinary transforming activity	ECOINVENT 3.10	1.78	kg



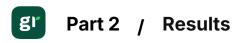
Results

Climate Change

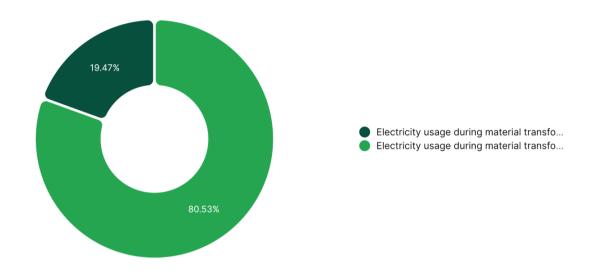
Step	lmpact (kg CO ₂ eq)	Percentage (%)
Manufacturing	1.71	45.61 %
Raw Material Extraction and Processing	1.51	40.43 %
End-of-Life Treatment	0.41	10.93 %
Transportation and Distribution	O.11	3.03 %

TOTAL 3.74 10

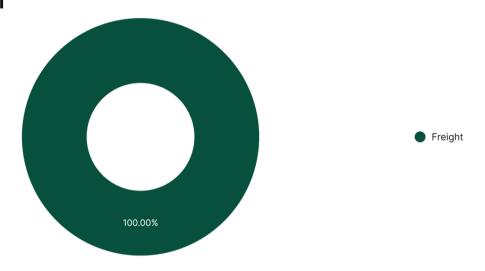
Climate Change - Raw Material Extraction and



Activity	nission Factor Num	Quantity	Unité (kg	lmpact CO₂ eq)	Percentage (%)
Sourcing of raw material (polypropylene	e) 2	0.25	kg	0.87	57.54 %
Sourcing of raw material (zinc)	1	0.25	kg	0.64	42.46 %


TOTAL		1.51	100.00 %

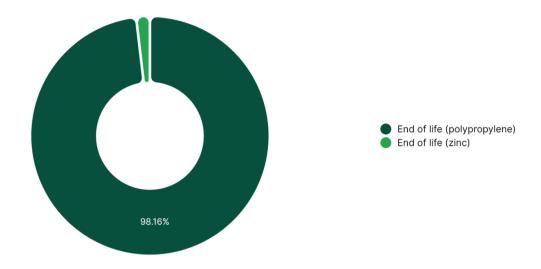
Climate Change - Manufacturing



Activity	Emission Factor Num	Quantity	Unité (kg	lmpact CO₂ eq)	Percentage (%)
Electricity usage during material transformation (zinc)	3	1.9	kWh	1.37	80.53 %
Electricity usage during material transformation (polypropylene)	3	0.46	kWh	0.33	19.47 %

Climate Change - Transportation and Distribution

Activity	Emission Factor Num	Quantity	Unité	Impact (g CO ₂ eq)	Percentage (%)
Freight	4	0.45	kg	113.52	100.00 %


TOTAL 113.52 100.00 %

Climate Change - End-of-Life Treatment

Activity	Emission Factor Num	Quantity	Unité	Impact (g CO ₂ eq)	Percentage (%)
End of life (polypropylene)	6	0.23	kg	401.29	98.16 %
End of life (zinc)	5	0.23	kg	7.54	1.84 %

TOTAL	408.84	100.00 %
TOTAL	100.01	100.00 %

